An alternative splicing variant in Clcn7-/- mice prevents osteopetrosis but not neural and retinal degeneration.

نویسندگان

  • I Rajan
  • R Read
  • D L Small
  • J Perrard
  • P Vogel
چکیده

The ubiquitously expressed chloride channel 7 (CLCN7) is present within the ruffled border of osteoclasts. Mutations in the CLCN7 gene in humans (homologous to murine Clcn7) are responsible for several types of osteopetrosis in humans, and deficiencies in CLCN7 can present with retinal degeneration and a neuronal storage disease. A previously reported Clcn7(-/-) mouse showed diffuse osteopetrosis accompanied by severe retinal and neuronal degeneration. In contrast, the authors produced a novel Clcn7(-/-) mutant where mice did not develop osteopetrosis but still developed lethal neural and retinal degeneration. In these mice, there was a rapid progressive loss of the outer nuclear layer and photoreceptor layers of the retina. Laminar degeneration and necrosis of neurons in layers IV and V of the cerebral cortex and in the CA2/CA3 regions of the hippocampus were associated with intraneuronal accumulations of autofluorescent granules (periodic acid-Schiff positive). The extensive reactive gliosis was always associated with the accumulation of intraneuronal cytoplasmic material. The authors found, through quantitative real time polymerase chain reaction analyses, that an alternate Clcn7 transcript (previously identified only in bone marrow) showed minimal expression in the brain and eye but moderate expression in bone, which correlates with rescue of the osteopetrotic phenotype in the face of continued retinal and neuronal degeneration. Findings in this knockout mouse model prove that osteopetrotic compression of the brain is not responsible for neuronal and retinal degeneration in CLCN7-deficient mice; rather, they suggest that neurotoxicity is most likely due to lysosomal dysfunction as a result of the functional lack of this chloride channel in the central nervous system and eye.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport activity and presence of ClC-7/Ostm1 complex account for different cellular functions.

Loss of the lysosomal ClC-7/Ostm1 2Cl(-)/H(+) exchanger causes lysosomal storage disease and osteopetrosis in humans and additionally changes fur colour in mice. Its conversion into a Cl(-) conductance in Clcn7(unc/unc) mice entails similarly severe lysosomal storage, but less severe osteopetrosis and no change in fur colour. To elucidate the basis for these phenotypical differences, we generat...

متن کامل

Scientific Report Transport activity and presence of ClC-7/Ostm1 complex account for different cellular functions

Loss of the lysosomal ClC-7/Ostm1 2Cl /H exchanger causes lysosomal storage disease and osteopetrosis in humans and additionally changes fur colour in mice. Its conversion into a Cl conductance in Clcn7 mice entails similarly severe lysosomal storage, but less severe osteopetrosis and no change in fur colour. To elucidate the basis for these phenotypical differences, we generated Clcn7 mice exp...

متن کامل

Effective Small Interfering RNA Therapy to Treat CLCN7-dependent Autosomal Dominant Osteopetrosis Type 2

In about 70% of patients affected by autosomal dominant osteopetrosis type 2 (ADO2), osteoclast activity is reduced by heterozygous mutations of the CLCN7 gene, encoding the ClC-7 chloride/hydrogen antiporter. CLCN7(G215R)-, CLCN7(R767W)-, and CLCN7(R286W)-specific siRNAs silenced transfected mutant mRNA/EGFP in HEK293 cells, in RAW264.7 cells and in human osteoclasts, with no change of CLCN7(W...

متن کامل

Identification of TCIRG1 and CLCN7 gene mutations in a patient with autosomal recessive osteopetrosis.

Osteopetrosis is a heritable bone disorder that exhibits highly clinical and genetical heterogeneity, and is caused by defective osteoclastic resorption. The three main forms are the autosomal recessive severe (ARO), the intermediate autosomal and the autosomal dominant benign osteopetrosis forms. In the present study, the clinical, biochemical and radiological manifestations were described in ...

متن کامل

Loss of the ClC-7 Chloride Channel Leads to Osteopetrosis in Mice and Man

Chloride channels play important roles in the plasma membrane and in intracellular organelles. Mice deficient for the ubiquitously expressed ClC-7 Cl(-) channel show severe osteopetrosis and retinal degeneration. Although osteoclasts are present in normal numbers, they fail to resorb bone because they cannot acidify the extracellular resorption lacuna. ClC-7 resides in late endosomal and lysoso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Veterinary pathology

دوره 48 3  شماره 

صفحات  -

تاریخ انتشار 2011